Home > matutils > planck.m

planck

PURPOSE ^

I=planck(nu,T)

SYNOPSIS ^

function I=planck(nu,T)

DESCRIPTION ^

 I=planck(nu,T)

 Planck's radiation law gives spectral intensity I for a
 radiation field of temperature T.

 Input in Hz and K
 Output in W m^-2 Hz^-1 Sr^-1

 To convert to Jy/Sr multiply by 1e26

 To convert to intensity per unit wavelength multiply
 by nu/lambda to get W m^-2 m^-1 Sr^-1

 To convert to power emmited per unit surface area
 multiply by pi to get W m^-2 Hz^-1.

 To convert to spatial energy density multiply by
 4pi/c to get J m^-3 Hz^-1.

 1 erg = 1e-7 Joule, cm^2 = 1e4 m^2
 so to convert to erg s^-1 cm^-2 Hz^-1 ster^-1
 mult by 1e7*1e-4

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SOURCE CODE ^

0001 function I=planck(nu,T)
0002 % I=planck(nu,T)
0003 %
0004 % Planck's radiation law gives spectral intensity I for a
0005 % radiation field of temperature T.
0006 %
0007 % Input in Hz and K
0008 % Output in W m^-2 Hz^-1 Sr^-1
0009 %
0010 % To convert to Jy/Sr multiply by 1e26
0011 %
0012 % To convert to intensity per unit wavelength multiply
0013 % by nu/lambda to get W m^-2 m^-1 Sr^-1
0014 %
0015 % To convert to power emmited per unit surface area
0016 % multiply by pi to get W m^-2 Hz^-1.
0017 %
0018 % To convert to spatial energy density multiply by
0019 % 4pi/c to get J m^-3 Hz^-1.
0020 %
0021 % 1 erg = 1e-7 Joule, cm^2 = 1e4 m^2
0022 % so to convert to erg s^-1 cm^-2 Hz^-1 ster^-1
0023 % mult by 1e7*1e-4
0024 
0025 h=6.626e-34;
0026 k=1.38e-23;
0027 c=3e8;
0028 x=(h*nu)./(k*T);
0029 
0030 I=(2*h*nu.^3*c^-2)./(exp(x)-1);

Generated on Sun 14-Jun-2015 17:12:45 by m2html © 2005