dIdT=planck_dIdT(nu,T) Partial derivative of the Planck function with respect to temperature at given temperature and frequency. Input in Hz and K Output in W m^-2 Hz^-1 ster^-1 K^-1 eg: To reproduce the plot Carlstrom uses everywhere: nu=0:1e9:500e9; Tcmb=2.726; y=1e-4; fx=sz_fx(nu); delTsz=Tcmb.*fx*y; dIdT=planck_dIdT(nu,Tcmb); delIsz=delTsz.*dIdT; plot(nu,delIsz.*1e7*1e-4);
0001 function dIdT=planck_dIdT(nu,T) 0002 % dIdT=planck_dIdT(nu,T) 0003 % 0004 % Partial derivative of the Planck function with respect 0005 % to temperature at given temperature and frequency. 0006 % 0007 % Input in Hz and K 0008 % Output in W m^-2 Hz^-1 ster^-1 K^-1 0009 % 0010 % eg: To reproduce the plot Carlstrom uses everywhere: 0011 % 0012 % nu=0:1e9:500e9; Tcmb=2.726; y=1e-4; 0013 % fx=sz_fx(nu); delTsz=Tcmb.*fx*y; 0014 % dIdT=planck_dIdT(nu,Tcmb); 0015 % delIsz=delTsz.*dIdT; plot(nu,delIsz.*1e7*1e-4); 0016 0017 h=6.626e-34; 0018 k=1.38e-23; 0019 c=3e8; 0020 x=(h*nu)./(k*T); 0021 0022 dIdT=((2*h^2*nu.^4)./(c^2*k*T.^2)).*(exp(x)./(exp(x)-1).^2);