This is a static copy of a profile report

Home

nanvar (1 call, 0.011 sec)
Generated 05-Aug-2011 13:00:40 using cpu time.
function in file /usr/local/MATLAB/R2011a/toolbox/stats/stats/nanvar.m
Copy to new window for comparing multiple runs

Parents (calling functions)

Function NameFunction TypeCalls
nanstdfunction1
Lines where the most time was spent

Line NumberCodeCallsTotal Time% TimeTime Plot
63
x0 = x - repmat(nanmean(x, dim...
10.011 s100.0%
64
y = nansum(abs(x0).^2, dim) ./...
10 s0%
61
denom(n==0) = NaN; % Make all ...
10 s0%
56
denom = max(n-1, 1);
10 s0%
53
if w == 0
10 s0%
All other lines  0 s0%
Totals  0.011 s100% 
Children (called functions)

Function NameFunction TypeCallsTotal Time% TimeTime Plot
nansumfunction10 s0%
repmatfunction10 s0%
nanmeanfunction10 s0%
Self time (built-ins, overhead, etc.)  0.011 s100.0%
Totals  0.011 s100% 
Code Analyzer results
No Code Analyzer messages.
Coverage results
[ Show coverage for parent directory ]
Total lines in function83
Non-code lines (comments, blank lines)50
Code lines (lines that can run)33
Code lines that did run15
Code lines that did not run18
Coverage (did run/can run)45.45 %
Function listing
   time   calls  line
1 function y = nanvar(x,w,dim)
2 %NANVAR Variance, ignoring NaNs.
3 % Y = NANVAR(X) returns the sample variance of the values in X, treating
4 % NaNs as missing values. For a vector input, Y is the variance of the
5 % non-NaN elements of X. For a matrix input, Y is a row vector
6 % containing the variance of the non-NaN elements in each column of X.
7 % For N-D arrays, NANVAR operates along the first non-singleton dimension
8 % of X.
9 %
10 % NANVAR normalizes Y by N-1 if N>1, where N is the sample size of the
11 % non-NaN elements. This is an unbiased estimator of the variance of the
12 % population from which X is drawn, as long as X consists of independent,
13 % identically distributed samples, and data are missing at random. For
14 % N=1, Y is normalized by N.
15 %
16 % Y = NANVAR(X,1) normalizes by N and produces the second moment of the
17 % sample about its mean. NANVAR(X,0) is the same as NANVAR(X).
18 %
19 % Y = NANVAR(X,W) computes the variance using the weight vector W. The
20 % length of W must equal the length of the dimension over which NANVAR
21 % operates, and its non-NaN elements must be nonnegative. Elements of X
22 % corresponding to NaN elements of W are ignored.
23 %
24 % Y = NANVAR(X,W,DIM) takes the variance along dimension DIM of X.
25 %
26 % See also VAR, NANSTD, NANMEAN, NANMEDIAN, NANMIN, NANMAX, NANSUM.
27
28 % Copyright 1984-2010 The MathWorks, Inc.
29 % $Revision: 1.1.8.2 $ $Date: 2010/10/08 17:25:19 $
30
1 31 if nargin < 2 || isempty(w), w = 0; end
32
1 33 sz = size(x);
1 34 if nargin < 3 || isempty(dim)
35 % The output size for [] is a special case when DIM is not given.
1 36 if isequal(x,[]), y = NaN(class(x)); return; end
37
38 % Figure out which dimension sum will work along.
1 39 dim = find(sz ~= 1, 1);
1 40 if isempty(dim), dim = 1; end
41 elseif dim > length(sz)
42 sz(end+1:dim) = 1;
43 end
44
45 % Need to tile the mean of X to center it.
1 46 tile = ones(size(sz));
1 47 tile(dim) = sz(dim);
48
1 49 if isequal(w,0) || isequal(w,1)
50 % Count up non-NaNs.
1 51 n = sum(~isnan(x),dim);
52
1 53 if w == 0
54 % The unbiased estimator: divide by (n-1). Can't do this when
55 % n == 0 or 1, so n==1 => we'll return zeros
1 56 denom = max(n-1, 1);
57 else
58 % The biased estimator: divide by n.
59 denom = n; % n==1 => we'll return zeros
60 end
1 61 denom(n==0) = NaN; % Make all NaNs return NaN, without a divideByZero warning
62
0.01 1 63 x0 = x - repmat(nanmean(x, dim), tile);
1 64 y = nansum(abs(x0).^2, dim) ./ denom; % abs guarantees a real result
65
66 % Weighted variance
67 elseif numel(w) ~= sz(dim)
68 error(message('stats:nanvar:InvalidSizeWgts'));
69 elseif ~(isvector(w) && all(w(~isnan(w)) >= 0))
70 error(message('stats:nanvar:InvalidWgts'));
71 else
72 % Embed W in the right number of dims. Then replicate it out along the
73 % non-working dims to match X's size.
74 wresize = ones(size(sz)); wresize(dim) = sz(dim);
75 wtile = sz; wtile(dim) = 1;
76 w = repmat(reshape(w, wresize), wtile);
77
78 % Count up non-NaNs.
79 n = nansum(~isnan(x).*w,dim);
80
81 x0 = x - repmat(nansum(w.*x, dim) ./ n, tile);
82 y = nansum(w .* abs(x0).^2, dim) ./ n; % abs guarantees a real result
83 end