|
My Project
|
Public Member Functions | |
| Geoid () | |
| virtual | ~Geoid () |
| Length | geocentricRadius (Angle geocentricLatitude) |
| Length | geodeticRadius (Angle geodeticLatitude) |
| Angle | geocentricLatitude (Angle geodeticLatitude) |
| double | flattening () |
| double | eccentricitySquared () |
Public Member Functions inherited from gcp::util::Ellipsoid | |
| Ellipsoid () | |
| Ellipsoid (Length majorAxis, Length minorAxis) | |
| virtual | ~Ellipsoid () |
| virtual double | eccentricity () |
| Length | radius (Angle latitude) |
Static Public Attributes | |
| static const Length | earthEqRadius_ |
| static const double | flattening_ = 1.0/298.257 |
| Geoid::Geoid | ( | ) |
Constructor.
....................................................................... Constructor.
|
virtual |
Destructor.
....................................................................... Destructor.
|
virtual |
....................................................................... Return the eccentricity squared
Eccentricity is defined as:
1 - e^2 = (b/a)^2
where a, b = semi-major, semi-minor radii of the ellipse.
flattening is defined as:
f = (a - b)/a = 1 - (b/a)
Thus: (b/a)^2 = (1 - f)^2 = 1 - e^2, or
e^2 = 1 - (1 - f)^2 = 2f - f^2 = f(2 - f)
Reimplemented from gcp::util::Ellipsoid.
|
inlinevirtual |
Return the flattening
Reimplemented from gcp::util::Ellipsoid.
Return the geocentric latitude corresponding to a given geodetic latitude
....................................................................... Return the geocentric latitude corresponding to a given geodetic latitude
Geocntric latitude and Geodetic latitude are related by:
tan(geoc) = (b/a)^2 * tan(geod)
Flattening is defined as: f = 1.0 - (b/a), so (b/a) = (1 - f)
Return the length of the radius vector from the center of the earth to the surface at a given geocentric latitude.
....................................................................... Return the length of the radius vector from the center of the earth to the surface at a given geocentric latitude.
Return the length of the radius vector normal to the surface at a given geodetic latitude
....................................................................... Return the length of the radius vector normal to the surface at a given geodetic latitude.
From:
geodR * sin(geodLat) = geocR * sin(geocLat),
we have
geodR = geocR * sin(geocLat)/sin(geodLat)
|
static |