My Project
|
Public Member Functions | |
Geoid () | |
virtual | ~Geoid () |
Length | geocentricRadius (Angle geocentricLatitude) |
Length | geodeticRadius (Angle geodeticLatitude) |
Angle | geocentricLatitude (Angle geodeticLatitude) |
double | flattening () |
double | eccentricitySquared () |
![]() | |
Ellipsoid () | |
Ellipsoid (Length majorAxis, Length minorAxis) | |
virtual | ~Ellipsoid () |
virtual double | eccentricity () |
Length | radius (Angle latitude) |
Static Public Attributes | |
static const Length | earthEqRadius_ |
static const double | flattening_ = 1.0/298.257 |
Geoid::Geoid | ( | ) |
Constructor.
....................................................................... Constructor.
|
virtual |
Destructor.
....................................................................... Destructor.
|
virtual |
....................................................................... Return the eccentricity squared
Eccentricity is defined as:
1 - e^2 = (b/a)^2
where a, b = semi-major, semi-minor radii of the ellipse.
flattening is defined as:
f = (a - b)/a = 1 - (b/a)
Thus: (b/a)^2 = (1 - f)^2 = 1 - e^2, or
e^2 = 1 - (1 - f)^2 = 2f - f^2 = f(2 - f)
Reimplemented from gcp::util::Ellipsoid.
|
inlinevirtual |
Return the flattening
Reimplemented from gcp::util::Ellipsoid.
Return the geocentric latitude corresponding to a given geodetic latitude
....................................................................... Return the geocentric latitude corresponding to a given geodetic latitude
Geocntric latitude and Geodetic latitude are related by:
tan(geoc) = (b/a)^2 * tan(geod)
Flattening is defined as: f = 1.0 - (b/a), so (b/a) = (1 - f)
Return the length of the radius vector from the center of the earth to the surface at a given geocentric latitude.
....................................................................... Return the length of the radius vector from the center of the earth to the surface at a given geocentric latitude.
Return the length of the radius vector normal to the surface at a given geodetic latitude
....................................................................... Return the length of the radius vector normal to the surface at a given geodetic latitude.
From:
geodR * sin(geodLat) = geocR * sin(geocLat),
we have
geodR = geocR * sin(geocLat)/sin(geodLat)
|
static |